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Abstract
Background and objectives: Chaperone-like proteins are involved in the pathogenesis of coronavirus infection through regu-
lation of the viral life cycle, immune response, and antigen presentation. A recently discovered class of chaperones, called 
heat-resistant obscure proteins (Hero proteins), performs functions similar to other molecular chaperones. This study aimed 
to investigate the association between the gene encoding the Hero protein SERF2 (Hero7) and the risk of severe COVID-19.

Methods: This case-control study was conducted according to the STROBE protocol. A total of 1,373 unrelated Russians (178 
patients with severe COVID-19 and 1,195 controls) were recruited. Genotyping of rs4644832 in the SERF2 gene was performed 
using a probe-based polymerase chain reaction approach. The effects of the single nucleotide polymorphisms (SNPs) were 
analyzed using bioinformatics tools, including GTExPortal, eQTLGen, HaploReg, atSNP, Gene Ontology, Lung Disease and 
Common Metabolic Diseases Knowledge Portals, and the STRING database.

Results: SNP rs4644832 in the SERF2 gene (effect allele G) was associated with a decreased risk of severe COVID-19 in the 
total sample (odds ratio (OR) = 0.56, 95% confidence interval (CI) 0.39–0.81, P = 0.001), females (OR = 0.51, 95% CI 0.31–0.87, 
P = 0.006), non-smokers (OR = 0.46, 95% CI 0.29–0.74, P = 0.0004), individuals with body mass index ≥ 25 (OR = 0.42, 95% CI 
0.25–0.7, P = 0.0004), individuals with low fruit and vegetable intake (OR = 0.38, 95% CI 0.22–0.67, P = 0.0004), and individuals 
with low physical activity (OR = 0.41, 95% CI 0.23–0.75, P = 0.002).

Conclusions: The G allele of rs4644832 in the SERF2 gene appears to have a protective effect against severe COVID-19. Func-
tional annotation of rs4644832 suggests that it may influence COVID-19 pathogenesis through regulation of proteostasis, ubiq-
uitination, inflammation-induced protein aggregation, the viral life cycle, and cytoskeletal functions.
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Introduction
The coronavirus disease (COVID-19) outbreak caused by the 
SARS-CoV-2 virus has become one of the largest pandemics in 
modern history. According to the World Health Organization, as of 
January 2025, COVID-19 has spread to 215 countries and caused 
more than seven million deaths worldwide.1 The spectrum of clini-
cal forms of COVID-19 varies from asymptomatic infection to se-
vere acute respiratory syndrome.2

It has been discovered that proteins with chaperone-like proper-
ties are actively involved in the pathogenesis of COVID-19 by reg-
ulating the immune response and viral replication,3 contributing 
to the development of a cytokine storm,4 and participating in the 
antigen presentation of viral proteins from infected cells.5 Further-
more, SARS-CoV-2 shares immunogenic epitopes with several 
human chaperones, which can lead to immune hyperactivation,6,7 
multi-organ damage,8 and post-acute sequelae of COVID-19.9 In 
addition, as obligate intracellular parasites, viruses can seize con-
trol over the host cell metabolic machinery, including the chaper-
oning system, to maintain their life cycle and sustain productive 
infection.10

A recently discovered class of chaperones, known as heat-re-
sistant obscure (Hero) proteins, is likely to perform functions simi-
lar to other molecular chaperones, such as maintaining proteostasis 
and protecting proteins from pathological aggregation.11,12 Hero 
proteins are hydrophilic, highly charged, heat-resistant proteins 
with low molecular weight and disordered structures. These prop-
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erties allow them to protect other proteins from denaturation under 
extreme conditions, either through simple “molecular shielding” 
or by promoting liquid-liquid phase separation.13

Small EDRK-rich factor 2 (SERF2, also known as Hero 7), a 
member of the Hero protein family, is known for its distinctive role 
in protein aggregation, which varies depending on the protein “cli-
ent”.13 Members of the SERF family perform dual functions, both 
promoting and preventing fibril formation of amyloidogenic pro-
teins.14 Several studies have confirmed that SERF2 increases ag-
gregation of huntingtin, β-amyloid, and α-synuclein, contributing 
to amyloid proteotoxicity.15–17 However, it also prevents aggrega-
tion of TAR DNA-binding protein 43 (TDP-43), which regulates 
viral RNA expression and has been actively studied in the research 
on COVID-19.18–20

The SERF protein family has an amino acid composition simi-
lar to that of DNA- and RNA-binding proteins, such as zinc-finger 
proteins.18,21,22 Since zinc-finger proteins are heavily implicated in 
COVID-19 pathogenesis,23,24 SERF2 may perform similar func-
tions, including the regulation of viral gene expression.18

In our previous studies, we identified an association between 
the SERF2 SNP rs4644832 and the risk of cerebrovascular dis-
eases.12,25 Because critical illness in COVID-19 and cerebrovas-
cular diseases share several key pathogenic mechanisms, such 
as increased production of proinflammatory cytokines, hyperco-
agulation, endothelial dysfunction, inflammation, and oxidative 
stress,26–34 we hypothesized that SNP rs4644832 correlates with 
an increased risk of severe COVID-19. Therefore, we set out to 
investigate the association between SERF2 SNP rs4644832 and the 
risk of severe COVID-19.

Materials and methods
This study follows the criteria of a case-control study, according 
to the STROBE guidelines. A total of 1,373 unrelated Russians 
(178 patients with a severe course of COVID-19 and 1,195 con-
trols with mild or asymptomatic COVID-19) from Central Russia 
were recruited for the study. The patients were enrolled during the 

COVID-19 pandemic from 2020 to 2022 at the intensive care units 
of Kursk Regional Hospital No. 6 and Kursk Regional Tuberculo-
sis Dispensary. The patients were recruited consecutively. Inclu-
sion criteria for the study were self-declared Russian descent and a 
birthplace within Central Russia. The COVID-19 patients were en-
rolled under the following exclusion criteria: hepatic or renal fail-
ure, endocrine, autoimmune, and/or oncological diseases, which 
could alter laboratory parameters. All patients in the case group 
had polymerase chain reaction (PCR)-confirmed COVID-19 and 
required intensive care unit admission. The control group consist-
ed of healthy volunteers who were diagnosed with COVID-19 but 
did not require hospitalization (Fig. 1). Baseline and clinical char-
acteristics of the study population are listed in Table S1.

Low fruit and vegetable intake was defined according to the 
World Health Organization guidelines as consuming less than 400 
g per day.35 Low physical activity was defined as engaging in less 
than 180 minutes per week of various physical activities.36

Genomic DNA was extracted from blood samples, and the 
quality of extracted DNA was assessed using a Nanodrop spectro-
photometer (Thermo Fisher Scientific, Waltham, MA, USA). SNP 
rs4644832 in SERF2 was genotyped using allele-specific probe-
based PCR in accordance with a previously published protocol. 
Details of primer design, reaction solution, and PCR protocol steps 
have been previously published.12

STATISTICA software (version 13.3, Informer Technologies, 
Inc., Santa Clara, CA, USA) was used for statistical analysis. The 
normality of distribution for quantitative data was assessed using 
the Shapiro-Wilk test. Most quantitative parameters deviated from 
a normal distribution; thus, they were presented as the median 
along with the first and third quartiles [Q1 and Q3]. The Kruskal–
Wallis test was applied to compare quantitative variables among 
three independent groups. Pairwise comparisons were then per-
formed using the Mann-Whitney test. These tests were employed 
to analyze associations between rs4644832 in SERF2 and clinical 
features of COVID-19 in the patient group.

To evaluate the independent contribution of the rs4644832 vari-
ant in SERF2 to severe COVID-19 risk while adjusting for rele-

Fig. 1. Study design. 
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vant covariates, we performed multivariate logistic regression in 
R (version 4.4.1). The analysis included one SNP (rs4644832 in 
SERF2) and five covariates: age, sex, smoking status, body mass 
index (BMI), and vegetable intake. Unfortunately, data on physical 
activity levels were unavailable for the control group and could not 
be included as a covariate in the regression model.

The dependent variable was disease status (0 = control, 1 = 
severe COVID-19), and all categorical predictors (SNP geno-
type, sex, smoking status, vegetable intake) were encoded as fac-
tors. Genotypes were modeled under a categorical (non-additive) 
framework. Continuous variables (age, BMI) were used as nu-
meric predictors. Individuals with missing values for any variable 
were excluded from the analysis.

The dataset was split into a training set (80%) and a testing set 
(20%) using the caret package to allow model evaluation. The lo-
gistic regression model was fitted using the glm function with a 
binomial link function. Model performance was evaluated by the 
likelihood ratio test against a null (intercept-only) model, Nagel-
kerke’s pseudo-R2 (calculated with the DescTools package), and 
classification accuracy on the training set.

To visualize significant predictors (P < 0.05), odds ratios (OR) 
and 95% confidence interval (CI) were extracted using the broom 
package, exponentiated, and plotted on a log scale. Predictors with 
OR > 1 were classified as “risk” factors, while those with OR < 1 
were classified as “protective”.

Compliance of genotype distributions with the Hardy-Weinberg 
equilibrium was assessed using Fisher’s exact test. Genotype fre-
quencies and their correlation with disease risk were analyzed 
using SNPStats software (https://www.snpstats.net/start.htm). A 
log-additive model was used for genotype association analysis. 
Associations within the entire group of COVID-19 patients and 
controls were adjusted for age and sex.

Due to the potential modifying influence of environmental risk 
factors on the association of genetic markers with disease, associa-
tions were analyzed based on the presence or absence of the risk 
factor. When information about an environmental risk factor was 
unavailable in the control group (for fruit/vegetable intake, physi-
cal activity levels, and BMI), the patient group was compared to 
the overall control group. In such cases, the Bonferroni correction 
was applied to account for multiple comparisons.

The following bioinformatics resources were used to analyze 
the functional effects of SNPs:

The bioinformatic tool GTExPortal (http://www.gtexportal.
org/) was used to analyze the expression levels of the gene in 
whole blood, blood vessels, and lungs, as well as to analyze the ex-
pression of quantitative trait loci (eQTLs).37 The method of eQTL 
analysis is fully described in our previous article.38

•	 The eQTLGen (https://www.eqtlgen.org/) was applied for the 
examination of eQTL expression in peripheral blood.39 eQTL-
Gen incorporates 37 datasets, with a total of over 31,000 indi-
viduals.

•	 The HaploReg v4.2 (https://pubs.broadinstitute.org/mammals/
haploreg/haploreg.php) was used to assess histone modifica-
tions. Histone H3 protein lysine residues at positions 27 and 
9 (H3K27ac and H3K9ac, respectively), as well as mono- and 
tri-methylation at position 4 (H3K4me1 and H3K4me3), were 
studied.40–42 This resource compiles ChIP-seq data from the 
Roadmap Epigenomics projects.43

•	 The atSNP affinity test (http://atsnp.biostat.wisc.edu/search) 
was used to assess the impact of SNPs on the gene’s affinity for 
transcription factors (TFs).44 In detail, the method of TF analy-
sis is described earlier in our study.45

•	 The Gene Ontology online tool (http://geneontology.org/) pro-
vides a systematic classification of gene functions, which we 
used to analyze the joint involvement of TFs linked to the refer-
ence or SNP alleles in biological processes directly related to 
the pathogenesis of COVID-19.46

•	 The Lung Disease Knowledge Portal (https://cd.hugeamp.org/) 
and Common Metabolic Diseases Knowledge Portal (https://
hugeamp.org/) were used to analyze the correlation between 
SNPs and phenotypic risk factors of severe COVID-19.

•	 The STRING database’s bioinformatic tools were used to study 
key functional partners of SERF2. Moreover, the STRING da-
tabase was utilized to analyze protein-protein interactions be-
tween SERF2 and its functional partners.47,48

•	 The Comparative Toxicogenomics Database (https://ctdbase.
org/) was employed to evaluate the influence of various chemi-
cals and hormones on SERF2 expression.49

Results
The distribution of genotype frequencies conformed to Hardy–
Weinberg equilibrium (P > 0.05). The log-additive model analy-
sis was performed in the total sample. Additionally, we analyzed 
groups stratified by sex, BMI, smoking status, fruit and vegetable 
intake, and physical activity to identify associations between ge-
netic variants and severe COVID-19 depending on the presence or 
absence of environmental risk factors (Table 1).

The analysis revealed significant associations between the poly-
morphic variant rs4644832 in SERF2 and severe COVID-19. The 
G allele exhibited a protective effect in the total sample (OR = 
0.56, 95% CI 0.39–0.81, P = 0.001) (Table 1), as well as in fe-
males (OR = 0.51, 95% CI 0.31–0.87, P = 0.006), non-smokers 
(OR = 0.46, 95% CI 0.29–0.74, P = 0.0004), individuals with BMI 
≥ 25 (OR = 0.42, 95% CI 0.25–0.70, PBonf = 0.0004), individuals 
with low fruit and vegetable intake (OR = 0.38, 95% CI 0.22–0.67, 
PBonf = 0.0004), and individuals with low physical activity (OR = 
0.41, 95% CI 0.23–0.75, PBonf = 0.002) (Table 1).

Multivariable logistic regression analysis
Multivariable logistic regression adjusted for age, sex, smoking 
status, BMI, and vegetable intake revealed significant associations 
between genetic and clinical factors and severe COVID-19 (Like-
lihood Ratio Test χ2 = 122.5, P < 0.001) (Table S2, Fig. 2). The 
model explained 25% of the variance (Nagelkerke R2 = 0.25) and 
correctly classified 86% of cases.

Carriers of the SNP rs4644832 SERF2 A/G genotype had 45% 
lower odds of severe COVID-19 compared to A/A homozygotes 
(OR = 0.55, 95% CI 0.31–0.93, P = 0.03) (Fig. 2). The G/G geno-
type showed a non-significant protective trend (OR = 0.43, 95% 
CI 0.06–1.61, P = 0.3). Each additional year of age increased the 
odds by 7% (OR = 1.07, 95% CI 1.05–1.10, P < 0.001). Females 
had 60% lower odds than males (OR = 0.40, 95% CI 0.25–0.63, 
P < 0.001). Regular vegetable consumption was strongly protec-
tive (OR = 0.38, 95% CI 0.25–0.58, P < 0.001), whereas smoking 
showed no significant association (P = 0.6). Each unit increase in 
BMI increased the odds by 7% (OR = 1.07, 95% CI 1.03–1.11, P 
= 0.001) (Fig. 2).

Clinical features of COVID-19 and rs4644832 SERF2
We analyzed associations between rs4644832 in SERF2 and clini-
cal features of COVID-19 among patients. In groups stratified by 
sex, age, smoking status, fruit and vegetable intake, and physical 
activity, several significant associations were observed. In females, 
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Fig. 2. Forest plot of significant predictors of severe COVID-19. 

Table 1.  Statistically significant associations of rs4644832 in SERF2 with severe COVID-19 in subgroups stratified by sex, smoking status, fruit and veg-
etable intake, physical activity, and BMI

Genetic variant Effect 
allele

Other 
allele N OR [95%CI]1 P2 (PBonf) N OR [95%CI]1 P2 (PBonf)

Males Females

rs4644832 SERF2 G A 591 0.62 [0.36–1.05] 0.059 782 0.51 [0.31–0.87] 0.006

Smokers Non-smokers

rs4644832 SERF2 G A 407 0.83 [0.44–1.56] 0.55 933 0.46 [0.29–0.74] 0.0004

Low fruit and vegetable intake Normal fruit and vegetable intake

rs4644832 SERF2 G A 367 0.38 [0.22–0.67] 0.0002 (0.0004) 525 0.87 [0.50–1.52] 0.63 (1.0)

Low physical activity Normal physical activity

rs4644832 SERF2 G A 443 0.41 [0.23–0.75] 0.001 (0.002) 453 0.71 [0.43–1.20] 0.19 (0.4)

BMI < 25 BMI ≥ 25

rs4644832 SERF2 G A 201 0.94 [0.49–1.80] 0.85 (1.0) 813 0.42 [0.25–0.70] 0.0002 (0.0004)

All calculations were performed relative to the minor alleles (effect allele); 1odds ratio (OR) and 95% confidence interval (CI); 2P-value; statistically significant differences are 
marked in bold. SERF2 refers to gene encoding small EDRK-rich factor 2.
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A/A homozygotes were associated with higher C-reactive protein 
(CRP) levels than heterozygotes (P = 0.02).

Notably, rs4644832 influenced clinical features in both smok-
ers and non-smokers. Among smokers, G/G homozygotes had a 
higher median BMI than A/A homozygotes and heterozygotes (P 
= 0.015). Among non-smokers, A/A homozygotes were associated 
with higher CRP levels (P = 0.005) and higher leukocyte counts (P 
= 0.025) compared to heterozygotes.

In the group aged over 68 years, protective A/A homozygotes 
were associated with higher thrombocyte counts than heterozy-
gotes (P = 0.01).

In the group with high fruit and vegetable intake, A/A homozy-
gotes had higher CRP levels than heterozygotes (P = 0.0075). Fur-
thermore, in the low physical activity group, A/A homozygotes 
showed higher thrombocyte (P = 0.02) and leukocyte counts (P = 
0.0495) compared to heterozygotes (Fig. 3, Table S3).

Molecular correlates of rs4644832 in SERF2

Analysis of cis-eQTL-mediated expression profiles of genes in vari-

ous tissues revealed several relevant associations. The G allele of 
rs4644832 in SERF2 decreases expression of ADAL, CATSPER2, 
CATSPER2P1, MAP1A, STRC, and STRCP1 and increases expres-
sion of SERF2, ENSG00000249839, HYPK, PDIA3, and ZSCAN29 
in lungs, blood vessels, and whole blood (Fig. 4, Table 2).

In whole blood, the G allele of rs4644832 in SERF2 significant-
ly decreases cis-eQTL–mediated regulation of SERF2, ZSCAN29, 
TUBGCP4, and PDIA3, while it increases cis-eQTL–mediated 
regulation of STRCP1, LCMT2, CATSPER2, MAP1A, STRC, CAT-
SPER2P1, ADAL, and TRIM69 expression (Fig. 4, Table 3).

According to HaploReg v4.2, rs4644832 in SERF2 has a sig-
nificant effect on histone modifications in COVID-19-related tis-
sues, including blood vessels, lung, and blood cells. This variant 
is located within a DNA region binding to histone H3, character-
ized by mono-methylation at lysine 4 of histone H3 (H3K4me1), 
marking enhancers in blood cells, and tri-methylation at lysine 4 
(H3K4me3), marking promoters in lungs, aorta, and blood cells. 
The effect of these histone marks is enhanced by acetylation of 
lysine 27 of histone H3 (H3K27ac), marking enhancers in lungs, 

Fig. 3. Associations between rs4644832 in SERF2 and C-reactive protein (CRP) levels in females (a); body mass index (BMI) in smokers (b); CRP levels (c) 
and leukocyte count (d) in non-smokers; thrombocyte count in the group older than 68 years (e); CRP levels in the high fruit and vegetable intake group 
(f); and thrombocyte (g) and leukocyte counts (h) in the low physical activity group (figure created using https://BioRender.com). 
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aorta, and blood cells, and by acetylation of lysine 9 of histone 
H3 (H3K9ac), marking promoters in blood cells. Furthermore, 
rs4644832 in SERF2 is located within DNA regions hypersensi-
tive to DNase-1 in blood samples (Table 4).

Bioinformatic resources including the Lung Disease Knowl-
edge Portal (https://lung.hugeamp.org/) and Common Metabolic 
Diseases Knowledge Portal (https://hugeamp.org/) were used to 
analyze correlations between rs4644832 in SERF2 and phenotypic 
risk factors for severe COVID-19. It was found that the risk allele 
A of SNP rs4644832 SERF2 significantly increased the likelihood 
of hospitalization in COVID-19 patients. It was also associated 
with increased CRP levels and monocyte percentage, and de-
creased eosinophil count, eosinophil percentage, and insulin-like 
growth factor 1 levels (Table 5).

The protective G allele of rs4644832 in SERF2 creates DNA 
binding sites for 46 TFs involved in the following biological pro-
cesses: positive regulation of CD8-positive, alpha-beta T cell dif-
ferentiation (GO:0043378; false discovery rate (FDR) = 0.00301), 
negative regulation of CD4-positive, alpha-beta T cell differentia-
tion (GO:0043371; FDR = 0.0399), cellular response to glucocor-
ticoid stimulus (GO:0071385; FDR = 0.00763), nuclear receptor-
mediated steroid hormone signaling pathway (GO:0030518; FDR 
= 0.01), and lung development (GO:0030324; FDR = 0.0144) 
(Table S4).

Protein-protein interactions of SERF2
Analysis of primary functional partners of SERF2 using the 
STRING database (protein-protein interactions (PPI) enrichment 
P-value: 3.92×10−5) revealed ten proteins with the most prominent 
interactions: actin related protein 2/3 complex subunit 2 (ARPC2), 
boule RNA binding protein (BOLL), huntingtin interacting protein 
K (HYPK), myosin light chain 6 (MYL6), ribosomal protein L23a 
(RPL23A), ribosomal protein lateral stalk subunit P1 (RPLP1), 
ribosomal protein S19 (RPS19), ribosomal protein S27 (RPS27), 

signal recognition particle 14 (SRP14), and translation machinery 
associated 7 homolog (TMA7) (Fig. 5, Table S5).

The full list of biological processes and Reactome pathways in-
volving SERF2 and its PPI-partners is presented in Table S6. Key 
pathways include cytoplasmic translation (GO:0002181; FDR = 
0.0082), ribosome assembly (GO:0042255; FDR = 0.0395), viral 
mRNA translation (HSA-192823; FDR = 0.00016), infectious dis-
ease (HSA-5663205; FDR = 0.0062), and SARS-CoV-2 modula-
tion of host translation machinery (HSA-9754678; FDR = 0.0254), 
among others.

Discussion
In this study, we provide genetic evidence that rs4644832 of SERF2 
is associated with severe COVID-19. We found that the G allele 
of rs4644832 SERF2 has a protective effect against severe COV-
ID-19, and this effect is modified by sex, smoking status, level of 
fresh fruit and vegetable intake, physical activity, and BMI. We 
observed the protective effect of allele G rs4644832 SERF2 exclu-
sively in females and non-smokers. This can be explained by the 
positive regulation of SERF2 expression by tobacco components 
and androgens,50–53 as previously mentioned.12 Moreover, several 
studies confirm that estrogen decreases SERF2 expression.54,55

Additionally, the protective effect of rs4644832 SERF2 was also 
observed in subgroups with low fruit and vegetable intake, low 
physical activity, and overweight (BMI ≥ 25). We hypothesize that 
the manifestation of the G allele’s protective effect occurs in these 
subgroups with predisposing risk factors for severe COVID-19 
due to the predominance of protective effects from lower BMI, 
normal fruit and vegetable intake, and regular physical activity.

The role of SERF2 in human pathology remains to be fully elu-
cidated. Our research group recently discovered a link between 
rs4644832 SERF2 and ischemic stroke.12 In our previous study, 
we suggested that SERF2 influences ischemic stroke development 

Fig. 4. SERF2 molecular effects and their interconnection with local expression quantitative trait locus (cis-eQTL) effects and Reactome pathways (figure 
created using https://BioRender.com). Each pathway in Reactome is identified by a stable ID that starts with the specie abbreviation, HSA for homo Sapiens, 
and ends with a unique ID. MHC, major histocompatibility complex; SERF2 refers to small EDRK-rich factor 2.
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Table 2.  Effect of the A allele of rs4644832 in SERF2 on gene expression (cis-eQTL) in various tissues (https://gtexportal.org)

SNP Effect allele Gene expressed P-value Effect (NES) Tissue
rs4644832, SERF2 A ADAL 0.00002 ↓ (−0.29) Artery - Aorta

2.00×10−7 ↓ (−0.26) Artery - Tibial
CATSPER2 5.30×10−7 ↓ (−0.2) Artery - Tibial

3.20×10−7 ↓ (−0.27) Lung
0.00052 ↓ (−0.12) Whole Blood

CATSPER2P1 0.0001 ↓ (−0.22) Artery - Tibial
ENSG00000249839 1.00×10−16 ↑ (0.68) Artery - Aorta

1.90×10−8 ↑ (0.6) Artery - Coronary
2.80×10−10 ↑ (0.41) Artery - Tibial
3.40×10−8 ↑ (0.4) Lung

HYPK 8.1×10−6 ↑ (0.1) Lung
MAP1A 7.8×10−6 ↓ (−0.17) Artery - Aorta
PDIA3 2.70×10−7 ↑ (0.1) Whole Blood
SERF2 1.1×10−6 ↑ (0.14) Artery - Aorta

0.00015 ↑ (0.16) Artery - Coronary
8.60×10−7 ↑ (0.088) Artery - Tibial
6.40×10−7 ↑ (0.11) Lung
1.60×10−10 ↑ (0.1) Whole Blood

STRC 1.30×10−8 ↓ (−0.32) Artery - Aorta
3.90×10−7 ↓ (−0.27) Artery - Tibial
2.30×10−11 ↓ (−0.37) Lung

STRCP1 2.50×10−7 ↓ (−0.31) Artery - Aorta
5.00×10−8 ↓ (−0.28) Artery - Tibial
0.00002 ↓ (−0.24) Lung

ZSCAN29 0.00014 ↑ (0.13) Lung
0.00004 ↑ (0.1) Whole Blood

NES, normalized effect size; SERF2, gene encoding small EDRK-rich factor 2; SNP, single nucleotide polymorphism; ↑, increase the n effect; ↓, decrease in the effect.

Table 3.  Effect of the G allele of rs4644832 in SERF2 on gene expression (cis-eQTL) in whole blood (https://www.eqtlgen.org/cis-eqtls.html)

SNP Allele Gene expressed Z-score P-value FDR

rs4644832, SERF2 G ZSCAN29 ↓ (−46.5249) 3.27×10−310 <0.05

SERF2 ↓ (−26.1112) 2.72×10−150 <0.05

TUBGCP4 ↓ (−23.7631) 8.03×10−125 <0.05

STRCP1 ↑ (20.6369) 1.28×10−94 <0.05

LCMT2 ↑ (18.2518) 2.01×10−74 <0.05

CATSPER2 ↑ (11.8697) 1.70×10−32 <0.05

PDIA3 ↓ (−10.7944) 3.65×10−27 <0.05

MAP1A ↑ (9.1256) 7.13×10−20 <0.05

STRC ↑ (9.0382) 1.59×10−19 <0.05

CATSPER2P1 ↑ (8.2227) 1.99×10−16 <0.05

ADAL ↑ (6.7174) 1.85×10−11 <0.05

TRIM69 ↑ (6.2919) 3.14×10−10 <0.05

eQTL, expression of quantitative trait locus; FDR, false discovery rate; SNP, single nucleotide polymorphism; ↑, increase in Z-score; ↓, decrease in Z-score.
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Fig. 5. Predicted functional partners of SERF2 according to the STRING database (PPI enrichment P-value: 3.92 × 10−5). ARPC2, actin related protein 2/3 
complex subunit 2; BOLL, boule RNA binding protein; HYPK, huntingtin interacting protein K; MYL6, myosin light chain 6; RPL23A, ribosomal protein L23a; 
PPI, protein-protein interactions; RPLP1, ribosomal protein lateral stalk subunit P1; RPS19, ribosomal protein S19; RPS27, ribosomal protein S27; SRP14, 
signal recognition particle 14; TMA7, translation machinery associated 7 homolog.

Table 4.  Tissue-specific effects of rs4644832 in SERF2 on histone modifications (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php)

Tissue H3K4me1 H3K4me3 H3K27ac H3K9ac DNase

Lung – Pro Enh – –

Vessels – aorta – Pro Enh – –

Blood Enh Pro Enh Pro DNase

Enh, enhancer; Pro, promoter.

Table 5.  Summary of associations between rs4644832 in SERF2 and phenotypes linked to a severe course of COVID-19

№ SNP Phenotype P-value Beta (OR) Sample Size
1 rs4644832, SERF2 (A/G) Hospitalized vs non-hospitalized COVID-191 0.008 OR▲1.0641 52 246
2 Eosinophil percentage2 2.27×10−16

Beta▼−0.0033 1 334 180
3 Eosinophil count2 2.00×10−12

Beta▼−0.0027 1 794 490
5 Insulin-like growth factor (IGF-1) 2 0.00001 Beta▼−0.0045 445 573
7 Plasma C-reactive protein2 0.0002 Beta▲0.0052 1 215 140
9 Monocyte percentage2 0.03 Beta▲0.0053 853 181

The effect allele is marked in bold. 1Data from Lung Disease Knowledge Portal; 2Data from Common Metabolic Diseases Knowledge Portal. OR, odds ratio; SERF2, gene encoding 
small EDRK-rich factor 2; SNP, single nucleotide polymorphism.
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through its ability to maintain proteome quality,12 which is also 
essential in the context of COVID-19.56

SERF2 plays a dual role in proteostasis. On one hand, it acceler-
ates amyloid formation.15–17 Persistent fibrin amyloid microclots 
obstruct small vessels and inhibit tissue oxygenation, potentially 
leading to thrombotic complications and post-acute sequelae of 
COVID-19.57 On the other hand, SERF2 prevents TDP-43 aggre-
gation.13 TDP-43 acts as a regulator of viral RNA expression due 
to its ability to interact with ribonucleoprotein complexes.19,58,59 
Viral infections trigger TDP-43 aggregation; for instance, the 
SARS-CoV-2 main protease induces neurotoxic TDP-43 aggrega-
tion,20 and its spike S1 protein receptor-binding domain (SARS-
CoV-2 S1 RBD) binds to TDP-43,60 suggesting TDP-43 involve-
ment in the neurological symptoms of COVID-19.19

In cis-eQTL analysis, we have found that the risk allele A of 
rs4644832 upregulates SERF2 expression in blood vessels, lung, 
and whole blood. Therefore, it may be associated with increased 
proteotoxicity and amyloid clot formation. Furthermore, increased 
TDP-43 stability caused by high SERF2 expression can promote 
the viral life cycle.59

Some genes influenced by rs4644832 SERF2 cis-eQTL effects 
are linked to ubiquitination, which is essential for protein synthe-
sis, signaling, and innate and adaptive immune responses.61 Ef-
ficient ubiquitination followed by degradation of SARS-CoV-2 
spike protein ensures an antiviral response.62 Recent studies have 
shown that high ubiquitination levels are associated with a fa-
vorable COVID-19 prognosis due to proper immune regulation 
and prevention of immune damage.63 The G allele of rs4644832 
SERF2 upregulates TRIM69, which encodes a human E3 ubiqui-
tin-protein ligase critical for antiviral immunity, mediating major 
histocompatibility complex class I (MHC I) antigen processing 
and presentation.64–67 It is worth mentioning that SERF2 itself, 
conversely, prevents degradation of ubiquitinated proteins.68

According to GTExPortal data, the risk allele A of rs4644832 
SERF2 increases PDIA3 expression via cis-eQTL effects. PDIA3 
encodes a molecular chaperone that is a core component of major 
histocompatibility complex class I and is heavily implicated in anti-
gen presentation to cytotoxic T lymphocytes.69–72 Overexpression of 
PDIA3 enhances Wnt/β-catenin signaling,73,74 which is involved in 
triggering the cytokine storm.75 Furthermore, recent studies confirm 
that PDIA3 disulfide isomerase activity participates in the viral life 
cycle76; its deletion significantly decreases viral load and inflamma-
tory cytokine levels.77,78 Considering that the G allele of rs4644832 
SERF2 reduces PDIA3 levels, this may explain the SNP’s protective 
effect against a severe course of COVID-19.

Moreover, in cis-eQTL analysis, we discovered that rs4644832 
of SERF2 modulates the expression of several genes involved in 
maintaining cytoskeleton function, including MAP1A,79 TUB-
GCP4,80 and STRC.81 The cytoskeleton ensures the structural 
integrity of the endothelial barrier; thus, endothelial dysfunction, 
one of the major pathological features of severe COVID-19,27,28 
is believed to be associated with cytoskeleton disorganization.82 
Viruses frequently depend on microtubules at multiple stages of 
their life cycle. SARS-CoV-2 employs the host cytoskeleton for 
virion transport, cell-to-cell spread, and disruption of the immune 
response.83

Notably, SERF2 and its functional partners in the PPI network are 
associated with viral mRNA translation and modulation of the host 
translation machinery by SARS-CoV-2. This discovery provides 
evidence of SERF2’s pivotal role in COVID-19 pathogenesis.

We accessed data from the Lung Disease Knowledge Portal 
and the Common Metabolic Diseases Knowledge Portal to iden-

tify associations between rs4644832 SERF2 and phenotypical risk 
factors for severe COVID-19. It was found that the risk A allele 
is associated with an increased likelihood of hospitalization in 
COVID-19 patients. Moreover, the A allele of rs4644832 SERF2 
increases certain laboratory traits typical of severe COVID-19, 
such as monocyte percentage and CRP levels.

Elevation in monocyte proportion can be linked to the COVID-
19-associated cytokine storm. The cytokine storm in COVID-19 
differs considerably from the canonical cytokine storm seen in 
macrophage activation syndrome in other infectious diseases.84 
In COVID-19, the atypical cytokine storm is orchestrated mainly 
by monocytes, whereas in macrophage activation syndrome, mac-
rophages play the predominant role.85

Our analysis of COVID-19 clinical features corresponds with 
data from the Common Metabolic Diseases Knowledge Portal. It 
shows a correlation between the protective G allele of rs4644832 
SERF2 and decreased CRP levels in females and non-smokers. 
CRP is one of the most accurate and sensitive markers of inflam-
mation.86,87 It is synthesized in the liver in response to pro-inflam-
matory cytokines, such as interleukin-6, interleukin-1β, and tumor 
necrosis factor-α.88 In COVID-19, CRP levels have an indisput-
able prognostic and diagnostic value.89

To further explore the molecular mechanisms by which 
rs4644832 SERF2 influences COVID-19 pathogenesis, we ana-
lyzed TFs that bind to the DNA region containing the studied SNP 
and their associated biological processes. These TFs are involved 
in positive regulation of CD8-positive, alpha-beta T-cell differen-
tiation (GO:0043378), negative regulation of CD4-positive, alpha-
beta T-cell differentiation (GO:0043371), cellular response to 
glucocorticoid stimulus (GO:0071385), nuclear receptor-mediated 
steroid hormone signaling pathway (GO:0030518), and lung de-
velopment (GO:003032).

CD8+ T-cells, or cytotoxic T-cells, are involved in eliminating 
cells infected by intracellular pathogens.90 CD4+ T-cells, or T-help-
er cells, play an important role in the adaptive immune response 
against intracellular pathogens.91

The efficacy of glucocorticoids in managing hyperimmune re-
sponses in COVID-19 patients is well established. They are effec-
tive immunosuppressors and are widely used to treat hypoxic res-
piratory failure and ARDS.92 Glucocorticoids reduce inflammation 
by regulating cytokine gene transcription and proinflammatory 
pathways.93 Activation of the cellular response to glucocorticoid 
stimulus and the nuclear receptor-mediated steroid hormone sign-
aling pathway, promoted by the protective G allele of rs4644832 
SERF2, may consequently enhance the efficacy of glucocorticoid 
treatment in severe COVID-19 cases.

Our study has several limitations. Firstly, since a COVID-19 
diagnosis can be based on clinical evidence, the control group in-
cludes both PCR-confirmed and clinically confirmed cases, which 
may lead to misclassification. Secondly, our study is limited to 
the Russian population; therefore, confirming our results requires 
studies in diverse populations. Furthermore, we did not measure 
gene expression levels in the blood of SERF2 genotype carriers. 
Instead, we used bioinformatic tools to assess cis-eQTL effects of 
SNPs on gene expression. Similarly, histone modifications and TFs 
binding were analyzed exclusively using bioinformatic resources.

Conclusions
The present study reveals the protective effect of the G allele of 
rs4644832 SERF2 against severe COVID-19. These results pro-
vide novel insights into the involvement of Hero proteins in the 
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pathogenesis of viral infections. Further studies may help uncover 
the detailed role of SERF2 in COVID-19 pathogenesis.
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